12 research outputs found

    Recovery of in-sewer dosed iron from digested sludge at downstream treatment plants and its reuse potential

    No full text
    Iron-based coagulants are dosed in enormous amounts and play an essential role in various segments of our urban water infrastructure. In order for the water industry to become circular, a closed-loop management strategy for iron needs to be developed. In this study, we have demonstrated for the first time that in-sewer dosed iron, either in the form of FeCl or ferric-based drinking water sludge (Fe-DWS) as a means to combat sewer corrosion and odour, can be recovered in the form of vivianite in digested sludge in down-stream wastewater treatment plants. Importantly, about 92 ± 2% of the in-sewer dosed Fe was estimated to be bound in vivianite in digested sludge. A simple insertion of Neodymium magnet allowed to recover 11 ± 0.2% and 15.3 ± 0.08% of the vivianite formed in the digested sludge of the in-sewer dosed iron in the form of FeCl and Fe-DWS, respectively. The purity of recovered vivianite ranged between 70 ± 5% and 49 ± 3% for in-sewer dosed FeCl and Fe-DWS, respectively. Almost complete (i.e. 98 ± 0.3%) separation of Fe in the form of ferrihydrite was achieved from vivianite after alkaline washing. Subsequent batch experiments demonstrated that the recovered ferrihydrite can be directly reused for efficient sulfide control in sewers. At a ferrihydrite-Fe:S molar ratio of 1.2:1, sewage dissolved sulfide concentrations was reduced from 15 mgS/L to below 0.5 mgS/L within 1 h of reaction. Overall, the results obtained in our study flag a first step for utilities towards a closed-loop iron-based coagulant management approach

    Effects of in-sewer dosing of iron-rich drinking water sludge on wastewater collection and treatment systems

    No full text
    2019 Elsevier Ltd The use of coagulants and flocculants in the water and wastewater industry is predicted to increase further in the coming years. Alum is the most widely used coagulant, however, the use of ferric chloride (FeCl3) is gaining popularity. Drinking water production that uses FeCl3 as coagulant produces waste sludge rich in iron. We hypothesised that the iron-rich drinking water sludge (DWS) can potentially be used in the urban wastewater system to reduce dissolved sulfide in sewer systems, aid phosphate removal in wastewater treatment and reduce hydrogen sulfide in the anaerobic digester biogas. This hypothesis was investigated using two laboratory-scale urban wastewater systems, one as an experimental system and the other as a control, each comprising sewer reactors, a sequencing batch reactor (SBR) for wastewater treatment, sludge thickeners and anaerobic digestion reactors. Both were fed with domestic wastewater. The experimental system received in-sewer DWS-dosing at 10 mgFe L−1 while the control had none. The sulfide concentration in the experimental sewer effluent decreased by 3.5 ± 0.2 mgS L−1 as compared with the control, while the phosphate concentration decreased by 3.6 ± 0.3 mgP L−1 after biological wastewater treatment in the experimental SBR. The dissolved sulfide concentration in the experimental anaerobic digester also decreased by 15.9 ± 0.9 mgS L−1 following the DWS-dosing to the sewer reactors. The DWS-doing also enhanced the settleability of the mixed liquor suspended sludge (MLSS) (SVI decreased from 193.2 ± 22.2 to 108.0 ± 7.7 ml g−1), and the dewaterability of the anaerobically digested sludge (the cake solids concentration increased from 15.7 ± 0.3% to 19.1 ± 1.8%). The introduction of DWS into the experimental system significantly increased the COD and TSS concentrations in the wastewater, and consequently the MLSS concentration in the SBR, however, this did not affect normal operation. The results demonstrated that iron-rich waste sludge from drinking water production can be used in the urban wastewater system achieving multiple benefits. Therefore, an integrated approach to urban water and wastewater management should be considered to maximise the benefits of iron use in the system

    Effects of in-sewer dosing of iron-rich drinking water sludge on wastewater collection and treatment systems

    No full text
    The use of coagulants and flocculants in the water and wastewater industry is predicted to increase further in the coming years. Alum is the most widely used coagulant, however, the use of ferric chloride (FeCl) is gaining popularity. Drinking water production that uses FeCl as coagulant produces waste sludge rich in iron. We hypothesised that the iron-rich drinking water sludge (DWS) can potentially be used in the urban wastewater system to reduce dissolved sulfide in sewer systems, aid phosphate removal in wastewater treatment and reduce hydrogen sulfide in the anaerobic digester biogas. This hypothesis was investigated using two laboratory-scale urban wastewater systems, one as an experimental system and the other as a control, each comprising sewer reactors, a sequencing batch reactor (SBR) for wastewater treatment, sludge thickeners and anaerobic digestion reactors. Both were fed with domestic wastewater. The experimental system received in-sewer DWS-dosing at 10 mgFe L while the control had none. The sulfide concentration in the experimental sewer effluent decreased by 3.5\ua0±\ua00.2 mgS L as compared with the control, while the phosphate concentration decreased by 3.6\ua0±\ua00.3 mgP L after biological wastewater treatment in the experimental SBR. The dissolved sulfide concentration in the experimental anaerobic digester also decreased by 15.9\ua0±\ua00.9 mgS L following the DWS-dosing to the sewer reactors. The DWS-doing also enhanced the settleability of the mixed liquor suspended sludge (MLSS) (SVI decreased from 193.2\ua0±\ua022.2 to 108.0\ua0±\ua07.7\ua0ml\ua0g), and the dewaterability of the anaerobically digested sludge (the cake solids concentration increased from 15.7\ua0±\ua00.3% to 19.1\ua0±\ua01.8%). The introduction of DWS into the experimental system significantly increased the COD and TSS concentrations in the wastewater, and consequently the MLSS concentration in the SBR, however, this did not affect normal operation. The results demonstrated that iron-rich waste sludge from drinking water production can be used in the urban wastewater system achieving multiple benefits. Therefore, an integrated approach to urban water and wastewater management should be considered to maximise the benefits of iron use in the system

    Effects of aging of ferric-based drinking water sludge on its reactivity for sulfide and phosphate removal

    No full text
    Recent studies demonstrated the practical potential of multiple beneficial reuse of ferric-rich drinking water sludge (ferric DWS) for sulfide and phosphate removal in wastewater applications. In practice, ferric DWS is often stored on-site for periods ranging from days to several weeks (or even months), which may affect its reuse potential through changes in iron speciation and morphology. In this study, we investigated for the first time the impact of ferric DWS ‘aging’ time on the iron speciation and morphology and its subsequent impact on its reactivity and overall sulfide and phosphate removal capacity. A series of coagulation tests were conducted to generate ferric DWS of a practically relevant composition by using raw influent water from a full-scale drinking water treatment plant (DWTP). A comparison with ferric DWS from 8 full-scale DWTPs confirmed the similitude. The presence of akaganeite (β-FeOOH) was detected in ferric DWS (through XRD analyses), independent of the DWS storage time. However, the morphology of akaganeite changed over time from a predominant poorly-crystalline phase in ‘fresh’ DWS (8 ± 0.1% of total Fe) to a highly crystalline phase (76 ± 3% of total Fe) at a sludge aging time of 30 days which was confirmed by means of Rietveld refinement in XRD analyses (n=3). Subsequent batch tests showed that its sulfide removal capacity decreased significantly from 1.30 ± 0.02 mmol S/mmol Fe (day 1) to 0.60 ± 0.01 (day 30), a decrease of 54 % (p < 0.05). The level of crystallinity however had no impact on sulfide removal kinetics, most sulfide being removed within 10 minutes. Upon aeration of sulfide-loaded ferric DWS in activate sludge, amorphous iron oxides species were formed independent of the initial DWS crystallinity which resulted in efficient P removal at capacities similar to that of conventional FeCl3 dosing

    Full-scale investigation of in-situ iron and alkalinity generation for efficient sulfide control

    No full text
    Hydrogen sulfide induced corrosion of concrete sewer pipes is a major issue for wastewater utilities globally. One of the most commonly used methods to combat hydrogen sulfide is the addition of ferric chloride. While a reliable and effective method, ferric chloride is acidic causing OH&S concerns as well as alkalinity consumption in sewage. This study investigates, under full-scale field conditions, an alternative method for sulfide control by in-situ electrochemical generation of iron ions using sacrificial iron electrodes. This method concomitantly produces alkalinity through cathodic OH generation, rather than consumption. The gaseous hydrogen sulfide concentrations at the discharge wet well of a real-life rising main (length: ∼1 km in, diameter: 150 mm) decreased from 173 ppm to 43 ppm (90 percentile of peak values), when a current of 0.86 A/m of sewage was applied. The 90 percentile peak HS value was further reduced to 6.6 ppm when the applied current was increased to 1.14 A/m sewage. Moreover, methane generation was almost completely inhibited from 25.3 ± 1.46 mg COD/L to 0.06 ± 0.04 mg COD/L. The overall cell voltage remained constant throughout the experimental period clearly showing the stability of the process. Detailed characterization of the down-stream sewer pipe biofilm revealed the complexity of the iron chemistry as the in-situ produced iron ions undergo transformation into a variety of iron species. Overall, this study demonstrates that in-situ generation of iron and alkalinity is an effective alternative method for hydrogen sulfide control in sewers

    Opportunities for reducing coagulants usage in urban water management: the Oxley Creek Sewage Collection and Treatment System as an example

    No full text
    Iron and aluminium based coagulants are used in enormous amounts and play an essential role in urban water management globally. They are dosed at drinking water production facilities for the removal of natural organic matter. Iron salts are also dosed to sewers for corrosion and odour control, and at wastewater treatment plants (WWTPs) for phosphate removal from wastewater and hydrogen sulfide removal from biogas. A recent laboratory study revealed that iron dosed to sewers is available for phosphate and hydrogen sulfide removal in the downstream WWTP. This study demonstrates for the first time under real-life conditions the practical feasibility and effectiveness of the strategy through a year-long full-scale investigation. Over a period of 5 months, alum dosing at ∼190 kg Al/day to the bioreactor in a full-scale WWTP was stopped, while FeCl dosing at ∼160 kg Fe/day in the upstream network was commenced. Extensive sampling campaigns were conducted over the baseline, trial and recovery periods to investigate sulfide control in sewers and its flow-on effects on phosphate in WWTP effluent, HS in biogas, as well as on the WWTP effluent hypochlorite disinfection process. A plant-wide mass balance analysis showed that the Fe dosed upstream was effectively used for P removal in the activated sludge tanks, with an effluent phosphate concentration comparable to that in the baseline period (i.e. with alum dosing to the bioreactor). Simultaneously, hydrogen sulfide concentration in biogas decreased ∼43%, from 495 ± 10 to 283 ± 4 ppm. No effects on biological nitrogen removal and disinfection processes were observed. Both effluent phosphate and HS in biogas increased in the recovery period, when in-sewer dosing of FeCl was stopped. X-ray diffraction failed to reveal the presence of vivianite in the digested sludge, providing strong evidence that thermal hydrolysis prevented the formation of vivianite during anaerobic digestion. The latter limits the potential for selective recovery of Fe and P through magnetic separation. Overall, our study clearly demonstrates the multiple beneficial reuse of iron in a real urban wastewater system and urges water utilities to adopt an integrated approach to coagulant use in urban water management
    corecore